
DESCRIPTION OF THE REAGENT TURBULENT MIXING PROCESS 

ON THE BASIS OF THE EQUATION OF THE SCALE PROBABILITY DENSITY 

V. A. Sosinovich and V. A. Tsyganov UDC 532.517.4 

A system of equations is derived and solved numerically that describes the pro- 
cess of turbulent mixing of reagents in terms of one of the mixing criteria, 
the degree of flow miscibility. 

The process of turbulent mixing of reagents to a molecular level can be separated con- 
ditionally into three separate stages: large-scale mixing of large turbulent vortices; fine- 
scale mixing to the smallest turbulent scale because of fine-scale motion; mixing to the mole- 
cular level because of themolecular diffusion process [i]. 

Formation of the scale spectrum of the reagent concentration field occurs in the first 
stage, which corresponds to the large-scale vortex of the velocity field characteristic for 
this flow. The description of this stage can be made on the basis of a formalism using the 
separation of turbulent fields into components: mean, large-scale, and fine-scale [2]. A 
certain function PCt(r) , the probability density of the concentration field scales, which 
can later be used as initial condition for description of the second mixing stage, is the 
result of the computation~ In this stage the single-point probability density of the con- 
centration field ft(c) varies slightly. 

The fine-scale flow configurationplays the main role in the second mixing stage, which 
can be considered isotropic in a good approximation, and the formalism of isotropic turbul- 
ence is used in its description. In this stage a reduction in the size of the reagent concen- 
tration field occurs down to the smallest of turbulence scales. The probability density of 
the concentration field fc(C) varies slightly, but the scale probability density reaches the 
developed state. Molecular diffusion and the chemical reaction are still of low intensity in 
this mixing stage. Only at the end of the second stage, when a noticeable fraction of scales 
on the Kolmogorov order appears in the flow, does the effective operation of diffusion start, 
as thereby does the third, terminating mixing stage. Consequently, a homogeneous mixture ap- 
pears in the flow, i.e., the reagents are mixed to the molecular level. The single-point 
probability density changes radically: if it can be approximated by the sum of two ~-func- 
tions at the beginning of the third mixing stage, indicating the separateness of the reagents 
in the flow, then at the end it is a smooth function reflecting the presence of a mixture with 
any relationship between the reagents in the flow [3]. The probability density of the scale 
distribution ~Ct(r ) varies slightly in this stage. Termination of the third stage is accom- 
panied by the beginning of an intensive chemical reaction and the appearance of the reaction 
product in a noticeable quantity in the flow. 

There follows from this schematic representation of the turbulent mixing process that 
the probability density distribution of the scales PCt(r) and the single-point probability 
density of the concentration field ft(c) can be criteria for the mixing quality. Indeed, 
Pct(r) is a function sensitive to the degree of reduction of the scalar turbulent fields in 
size, and consequently it can be used to describe adequately the first and second mixing 
stages. The function ft(c) starts to change strongly in the last mixing stage and consequent- 
ly can be a good indicator of the diffusion process. 

The present paper is devoted to a description of the second stage in turbulent mixing 
of reagents. The evolution of the scale probability density of the concentration field of 
one of the reagents is studied on the basis of a numerical solution of the system of equa- 
tions for this function. The initial state is here assumed known. 
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Fig. I. Scale probability density of a turbulent concen- 
tration field for Re = 200 (a) and Re = i000 (b); solid 
curves -- a = 0; dashes -- ~ = 0.5. 

Fig. 2. Mean scale and scale variance of turbulent con- 
centration field for Re = 200 (a) and Re = i000 (b); solid 
curves -- o = 0; dashes -- ~ = 0.5. 

The scale probability density of the concentration field can be determined as follows: 

b~ (r) = l~t (r)/ ,I t~t (r) d r ,  ( 1 )  

where 0 

1 n~(r, O. 
P~ (r) = T ( 2 )  

The function H(r, t) is a two-point structural function of second order of the turb~lent 
scalar field. Its determination in terms of the difference in scalarfield concentration at 
flow points separated by a distance r has the form [4] 

H(r, t) = < Ac(r, t) z >.  (3)  

If the equation 

ac + a(o~c) O2c . . _  
at ox----Z, = z Ox, Ox, ~o (c), 

where 

(4) 

co (c) = k (c - -  cZ), ( 5 )  
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Fig. 3 The mean rate of dis- 
sipation of the turbulent sca- 
lar field fluctuation level: 
solid curves -- o =0; dashes -- 
~= 0.5. 

is taken as dynamic equation for the concentration field, then the following equation 

. 

OP~t(r) 1 [ 2__2_L(r, t)] + 27~[p~t.(r) Ot =---~- L'(r, t)+ r 
2 p~.(r)___2 p~(r)]_2k(l_2<c>)P~(r)_2kT,(r,t) 
r r 2 

(6) 

can be obtained for the function PCt(r). Here X is the diffusion coefficent and k is the 

Arrhenius factor; 

L ( r ,  t ) =  <Av(r, t ) A c ~ ( r ,  t )> ;  (7) 

T ( r ,  t)=: <cz~, t)c~@r2 t)> (8) 

The expression for the source term ~(c) in the form of (5) describes the following sit- 
uation. A reagent A goes into reaction with a reagent B and is consequently transformed into 
B. Only two reagents therefore exist in the flow. The expression (5) is convenient in the 
respect that it is determined by the field of just one scalar and at the same time its mag- 
nitude depends completely on the mixing quality: m(c) = 0 where c = 0 or c = I, i.e., 
where pure components are present, while m(c) is maximal for c = 0.5, i.e., where uniform 
mixing of the reagents occurred. 

Equation (6) is not closed because of the presence of two additional unknown functions 
L(r, t) and T(r, t). The function T(r, t) is generated by the source term m(c) in (4) and 
determines the dissimilar roles of the scales of different magnitude during the chemical re- 
action. We limit ourselves in this paper to considering the fast reaction case when it is 
sufficient to know just the statistics of the passive scalar [5] to calculate the reaction 
rate. Hence, terms associated with the chemical reaction rate in the equation for the 
function PCt(r) are omitted. 

The function L(r t) describes mixing of the reagents by an isotropic velocity field. 
Analogies with the molecular diffusion mechanism, just as was done in deriving the equation 
for the spectrum in the Heisenberg approximation [4], can be used to model it. The following 
equation for pCt(r) can consequently be obtained: 

at (r)+ P~(r) +2[g+~.[V-Pt(r')r'dr' P;"(r)+. 2,,,P~'(r)--@Pf(r) .(9) 
r o - r - 

Here 8 i s  a c o n s t a n t  whose v a l u e  w i l l  be d e t e r m i n e d  l a t e r ,  P c ( r )  i s  t he  e n e r g y  d i s t r i b u -  
t i o n  d e n s i t y  o f  the  t u r b u l e n t  v e l o c i t y  f i e l d  in  the  d i f f e r e n t  s c a l e s ,  Th i s  f u n c t i o n  i s  d e t e r -  
mined in terms of the structural two-point function D(r, t) from the formula 

1 
D' (r, l). P t ( r )  = 2 (10) 

A c l o s e d  e q u a t i o n  can be o b t a i n e d  f o r  the  f u n c t i o n  (10) i f  (15) from [6] i s  used and t he  
analogy with the molecular energy transfer mechanism relied upon for its closure. This 
equation has the form 
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] [ ] OP,(r) --2?/P~--[~[P;(r)+ 4 Pt(r) .+2[v+?ifVP,(r')r'dr, ] p[(r)+ 4__p;(r)_ 4 Pt(r) 
Ot r o ' r ' r 2 "(ii) 

The constants B and 7, which can be associated with the constants in the 2/s law for the 
inertial-convective and inertial intervals if thase equations are solved in the intervals 
mentioned, enter into (9) and (ii) [4]. The appropriate formulas have the form 

2 , 4 v ~  . 12 
= ] / ~ S  ' 7 =  l l  V 3 C  a/2 ' (12) 

where C is a constant in the a/, law for the velocity structural function, and S is the same 
for the structural function of the concentration field. According to [4], these constants 
have the following magnitudes: C = 1.9 and S = 2.8. Therefore, we obtain for the constants 

and y 

= 1.08; 7 =  0.24. 
( 1 3 )  

Equations (9) and (ii) must be solved jointly by giving the functions Pet(r) and Pt(r) at 
the initial time. 

The function 

can be used as initial conditions for Pet(r) and Pt(r). Here X in the distribution parameter 
or the characteristic scale, B(O) is the rms value of the concentration fluctuations in the 
case of a scalar reagent concentration field, and the rms energy of the velocity fluctuation 
in the case Of the velocity field. 

If the initial distribution is characterized by a broad scale spectrum, then an attempt 
can be made to approximate it by the expression 

Po (r) = g~a J 77 exp %2 

0 

which is obtained by taking the average of (14) under the assumption that the scale X in 
(14) is a random variable with normal probability distribution. The quantities Xo and o 
are the mean scale and the scale variance, respectively. The form of the function Po(r) is 
shown in Fig. 1 for c = 0.5 and g = 0. The case o = 0 corresponds to (14). 

The system (9) and (ii) with initial conditions in the form (15) was solved numerically. 
For convenience in the calculations, all the variables were made dimensionless by using the 
following relations 

~0 ~0 VB----- X0 VB-(0) r=Xo~ t = ~ , ;  Re= (0) ; Pe . . . .  (16) 
X 

The formula (15) for c = 0, c = 0.5 was used as initial conditons in the computation. The 
integrals in the right side of the equations were computed by the trapezoid formula. A non- 
uniform step in r was used~ The size of the step was increased as r increased. The initial 
values of Re and Pe = Re were selected equal to 200 and 1000. The time to compute one ver- 
sion in o, Re and ~=15 was i0 min. 

Results of computing the scale probability densities for different initial conditions 
are presented in Fig. la and b. Certain moments of these functions were also calculated, 
which illustrate the turbulent mixing process more graphically. The mean scale is 

where 

o o  

1 ;rP~(r) dr, 
<;~(t) > = B( t )  

0 

(17) 

The variance of the scales is 

0 o  

e (t) = ] P~ (r) dr. (18) 
0 

c~(t)  = V < ;~2(t) > - -  < x(t)  > 2, ( 1 9 )  
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where 

1 S r2p~(r) dr" 
< ~ (t) > - -  B (0  ( 2 0 )  

0 

These quantities are represented in Fig. 2a and b. 

The rate of dissipation of the turbulent scalar field fluctuation level 

cr f N (r 3%Pt ( )i~=0 (21) 

is shown in Fig. 3. 

It is seen from the results presented for the computation that in the initial evolution 
stage the probability density PCt(r) reduces to stretching the function towards smaller scales. 
In this stage the mean scale drops abruptly, the variance of the scales grows because of the 
increase in the contribution of the small scales, which is a reflection of the fine-scale 
turbulent mixing in the flow. Starting with x = 0.5-1 the fast mixing stage terminates 
and the slow evolution of the probability density starts. The scale starts to grow. If we 
were to try to assess the degree of miscibility by just the mean scale, then we could arrive 
at a false deduction that small scales vanish in the flow. But this is not so, as is seen 
well from the graph of the probability density of the reagent field scales. The growth of 
< % (t)> is related to a relative increase in the role of the large scales, but small scales 
are also present in the flow. It is seen from Figs. 2a and b that for �9 = 0 and T = 0.8 
the mean scale is practically identical. However, the probability density function PCt(r) 
and hence the structure of the reagent field also are completely different. The character- 
istic reflecting this difference is the variance of the scales (see Figs. 2a and b) which 
constantly grows. 

As is seen from Fig. i, the difference between the variants with different initial var- 
iances diminishes with time. It is seen from Fig. 3 that in the case of a large reduction 
in the flow size, the maximum of the dissipation rate is reached earlier. However, the mag- 
nitude of the dissipation at the point of the maximum turns out to be greater in the case 
of a smaller initial reduction in the flow size. 

The difference between Re = 200 and Re = I000 is that for larger Re number the scale 
probability density is large for small values of the scale, i.e., the scalar field turns out 
to be reduced to a large extent. 

The results obtained in this paper refer to modeling the second stage of the mixing and 
the beginning of the third stage. The first stage is substantially anisotropic. Consequently 
its description should be based on examination of the evolution of large-scale coherent flow 
structure. This question is not examined in this paper. On the basis of the results obtained 
the deduction can be made that the second stage of turbulent mixing is modelled well by the 
evolution of the scale probability density PCt(r). Moments of this function will enter as 
coefficients into the equation for the probability density of values of the turbulent scalar 
field ft(c), whose study is needed for modeling the third stage of turbulent mixing of rea- 
gents and for computation of the chemical reaction rate. 

NOTATION 

PCt(r) scale probability density of a turbulent isotropic concentration filed; ft(c) a 
single-point probability density of values of the turbulent concentration field; H(r, t) a 
two-point structural, second-order function of a turbulent scalar field; Ac(r, t), diffeeence 
in ' concentrations of a scalar turbulent field at points^separated by a distance r at a time 
t; ~,X, molecular viscosity and diffusion coefficients; Pt(r) function describing the energy 
distribution in different scales of the turbulent velocity field; D(r, t) two-point structural 
second-order function of the turbulent velocity field; <%(t)> , mean scale of the concentra- 
tion field; o% (t), scale variance; N(t) rate of dissipation of the turbulent scalar field 
fluctuations level. 
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MODELING THE DELAY IN MIXING TO THE MOLECULAR LEVEL 

IN CALCULATING THE THERMAL RADIATION OF TURBULENT FLOWS 

A. I. Bril' UDC 536.3:532.5i7.4 

An appropriate method is proposed for taking account of the delay in mixing to 
the molecular level in turbulent flows of jet type; the method is intended for 
the calculation of the thermal radiation. 

In calculating the physical and chemical processes occurring in free jets and wakes with 
the decay of tangential disturbances, with a nonlinear dependence on the thermodynamic pa- 
rameters, there arises the problem of taking correct account of the problem of turbulent mix- 
ing, which influences the structure of the concentration and temperature fields [1-3]. One 
of the most important manifestations of the flow turbulence is the delay in mixing to the 
molecular level, i.e., the retention of the individual characteristics (temperature, chemical 
composition, etc.) of the volume of material penetrating into the turbulized region for a 
finite interval of time. In [3], it was shown that the problem of taking turbulence into 
account in calculating the chemical-reaction rates in peripheral regions of turbulent jets 
may be successfully solved by direct modeling of the mixing delay. 

Such modeling may also be required in calculating the thermal radiation of a high-temp- 
erature jet issuing into a medium at a lower temperature and also in developing optical 
methods of turbulent-flow diagnostics. This is associated with the fact that finite volumes 
of unmixed hot gas penetrate from the potential core of the flow into the peripheral regions 
of the jet, with a certain probability. Neglecting this phenomenon may significantly affect 
estimates of the transverse dimensions of the jet with respect to the thermal radiation or 
the calculation of the brightness-temperature fields. Quantitative estimates are required 
for more definite assertions regarding the influence of the mixing delay on the thermal rad- 
iation. A corresponding method for numerical investigations will be constructed, following 
[3], on the basis of a two-parameter model of the turbulent viscosity. 

Numerous variations of the two-parameter model of turbulent viscosity (i.e., models in 
which the turbulent viscosity is determined by two characteristic parameters of the turbu- 
lence field) are based on the kinetic-energy balance equation of the pulsations, to which is 
added the differential equation determining the scale of the pulsations. The basis of the 
two-parameter model, its fundamental equations, and also some examples of its use may be 
found in [4], for example. Critical analysis of the principal modifications of the model 
based on a comparison of experimental and theoretical data may be found in [5]. 

So as to be specific, isobaric axisymmetric jets will be considered below. The so- 
called <ke2> model of turbulent viscosity will be used for their calculation [5]. One of 
the advantages of this model is that, in selecting the empirical coefficients, much atten- 
tion is given to the description of sections of the flow remote from the axis, which is im- 
portant in calculating the radiation in peripheral regions of the jet. Within the framework 
of the <kE2> model, the dissipation of the kinetic energy of the pulsations e is used as the 
function determining the characteristic scale of the pulsations. The turbulent viscosity is 
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